
- Cet évènement est passé.
Soutenance de thèse de Francesco Maria Iudica
Titre : Aspects of the p-adic Kudla program for the unitary group GU(2,1), dirigée par Marc-Hubert Nicole
17 juin 2025 · 8h00 – 17h00
Organisateur :
Francesco Maria Iudica
Lieu :
Résumé. Ce manuscrit explore quelques aspects du programme de Kudla p-adique pour
les surfaces modulaires de Picard associées au groupe GU(2, 1). En particulier,
nous nous intéressons à la variation p-adique du théorème de Cogdell, qui est
l’analogue du résultat célèbre de Hirzebruch et Zagier pour les surfaces modulaires
de Hilbert. Cette thèse suit l’exemple de Longo–Nicole visant à relier
le programme de Kudla aux familles p-adiques de Hida. Après avoir interpolé
p-adiquement le relèvement de Kudla et son adjoint, nous construisons des
cycles spéciaux de poids supérieurs sur des variétés de Kuga–Sato, et nous
appliquons le formalisme de Loeffler, en obtenant des familles -adiques de
classes de cohomologie de cycles spéciaux. Enfin, nous construisons une série
génératrice -adique des « gros cycles » ci-dessus, qui a la propriété d’interpoler
les formes modulaires étudiés par Cogdell.